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Temporal Aggregation of Economic 
Time Series 

by Albert MARCET 

Introduction 

We call temporal aggregation the situation in which a variable that 
evolves through time can not be observed at all dates. This phe- 
nomenon arises frequently in economics, where it is very expensive to 
collect data on certain variables, and there is no reason to believe that 
economic time series are collected at the frequency required to fully 
capture the movements of the economy. For example, we only have 
quarterly observations on GNP, but it is reasonable to believe that the 
behavior of GNP within a quarter carries relevant information about 
the structure of the economy. 

In order to give a mathematical structure to this problem, we as- 
sume that there is an underlying stochastic process in continuous time 
that is observed only at discrete intervals. This structure has been used 

(1971) and Geweke (1978) to describe the effects of temporal 
ion in the distributed lag model. 

will be concerned with the issues that arise in the study of linear 
edictions of future values of the variables given all information up to 
e present. In other words, if we have a vector of n variables y, we try 

to predict y;(t  + 1) using a function of the form CEO p i  y(t - k). 
Since the fundamental moving average representation (henceforth 

AR) of a stochastic process (or Wold decomposition) is a good sum- 
of the properties of those predictions, we will describe what is the 
onship between the Wold decomposition of the unobserved wntin- 
time process and the Wold decomposition of the discrete sampled 

This approach to time series analysis has been used widely in eco- 
mics. In rational expectations models, agents are often assumed to 
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form their expectations using the kind of predictions mentioned above 
and the MAR has proved to be a useful tool in solving these models. 
Also, Sims (1980) has developed a method for interpreting time series 
using the MAR; this approach has been used in Litterman and Weiss 
(1985) and Bernanke (1986). 

We focus on the following type of questions. What features of the 
continuous MAR are captured by the discrete, MAR? What type of 
systematic biases will exist in the discrete MAR? How are the one- 
step-ahead prediction errors in continuous and discrete time related? 
Can we approximate in any sense the continuous model arbitrarily well 
by sampling the continuous process more frequently? 

Our study can be useful in deciding if the results obtained in a 
given application of time series analysis can be attributed to time ag- 
gregation bias. If the econometrician suspects that this is the case, 
he should look for data collected at  a finer interval or, alternatively, 
he could estimate a structural model in continuous time with discrete 
sampled data using, for example the techniques developed by Hansen 
and Sargent (1980b) and (1981d). These methods have been applied 
in Hansen and Sargent (1983a), Christiano (1984) and Christiano and 
Eichenbaum (1985, 1986). Other techniques have also been developed 
by Bergstrom (1976, 1983) and by Lo (1985). 

In order to analyze the relationship between the continuous and 
discrete MAR, we introduce an approach that relates these from the 
point of view of the space of functions L ~ .  As an application of this 
approach, we analyze the effects of using data that have been averaged 
over a certain period of time, and show that a systematic bias will be 
present when (his type of d a k  are mixed with sampled data. 

Due to the nature of the subject, it is inevitable that the exposition 
will become technical. An effort has been made in order to clarify the 
meaning of the propositions, and to give them an intuitive interpreta- 
tion. In the conclusion, the main results of the paper are restated in a 
simple way, and some direct implications of our work for econometric 
practice are briefly discussed. 

In terms of the issues addressed, our work is in the same spirit as 
that of Sims (1971) and Geweke (1978). It is worth noting that the 
distributed lag model (studied by Sims and Geweke), and the study of 
predictions using all data up to the present (studied in this paper) are 
two basically different ways of analyzing time series, so that our work 
is not an extension or a particular case of their model. Interestingly 
enough, in the distributed lag model, one effect of temporal aggrega- 

Temporal Aggregation of Economic Time Series 239 

tion is that the first few coefficients of the discrete approximation will, 
in general, be small compared with the corresponding coefficients in 
continuous time, while the effect of temporal aggregation on the MAR 
is, in general, the oppposite (see Section 3). 

We will be concerned with a very general class of n-dimensional 
stochastic processes to be specified in Section 1, where we set up our 
problem and our notation. In Section 2, we discuss the relationship 
between the discrete and the continuous one-step-ahead innovations. 
In Section 3, we display a formula relating the MAR of the continuous 
process, to the MAR of the discrete (sampled) process, and we compare 
it with the formulas obtained by Sims and Geweke in the distributed 
lag model. We find that there is an intimate relationship between how 
good the predictions with sampled data are, and how well the discrete 
MAR approximates the continuous MAR; also, we use these theoret- 
ical results to discuss how and when the shape of the MAR of the 
sampled process will be very different from the shape of the continuous 
MAR. Section 4 contains certain results and examples that illustrate 
how Granger causality relationships are affected by time aggregation. 
The effects of using unit-averaged data, are studied in Section 5. In 
Section 6, we obtain some preliminary results on the issue of wnver- 
gence of the MAR as the sampling frequency increases; the results in 
this section analyze the approximation of the continuous projection 
with the discrete projection. Finally, we discuss in an appendix the 
autoregressive representation of the sampled process; the results in the 
appendix are useful in other parts of the paper. 

1. Definition of the Problem 

Let us consider an n-dimensional stochastic process in continuous 
time y; we will denote by Hv(t) the set that contains all linear combi- 
nations of yj(8) for all s t and i = 1, . . . , n, plus the limits of conver- 
gent sequences of these linear combinations. More formally, Hv(t) = 
cljlinear subspace generated by yi(ti), for all s 5 t, i = 1, . . . , n), 
(where the closure is takenwith respect to a metric to be specified 
below). Intuitively, we can think of this set as containing a11 random 
variables of the form 

where tk 5 t, and pk E Rn are constant vectors. 
We will treat the space of random variables as a metric space with 

the distance given by the mean-square difference; i.e., for any two ran- 
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dom variables x ,  z, 

One of the implications of using this distance, is that two random vari- 
ables x, z will be considered equal when they are equal with probability 
one. 

Consider the problem of predicting y(t + a )  , a > 0, using all the 
information available up to time t. We define the best linear predictor 
of y(t + a) with information up to t, as the element of Hv(t) that 
minimizes the mean square error 

E(y(t+a)-x12 for x € H v ( t ) .  

We will call this predictor the projection of y(t + a) on Hp(t), and we 
will denote it by ~ ( ~ ( t  + a)lHv(t)). More formally, we define q(y(t + 
a )  1 Hy(t)) as the element of Hv(t) such that 

Next, we are going to define the problem of temporal aggregation. 
Let (R, S, P) be a probability space, and let y be a multivariate 

stochastic process in continuous time, y : R x Q -t Rn. In order to 
guarantee that a moving average representation exists in continuous 
time, we make the following assumptions on this process: 

1. E( yi(t )) = 0 , var( yi(t )) < w for all i = 1, . . . , n, and all t E R 
2. y is covariance stationary. 
3. y is linearly regular. 

Then, letting m 5 n be the rank of the process y, this process has 
a fundamental (or Wold) moving average representation (MAR), which 
can be expressed by 

where a : R 4 Rnxm, and f, is a vector of m orthonormal random 
measures. The matrix function a is unique up to multiplication by an 
orthonormal matrix.' 

In this paper, we will often use the following properties of random 
measures: for any two square integrable functions f ,  g : R 4 RnXm, 
the integrals J fdf, and Jgdf, are well defined random variables, and 

they satisfy: E(J fd( Jg'df,) = Jf g'. We can use this property to 
find the covariance function of y; since 

In the rest of the paper, the initials MAR will stand for the funda- 
mental moving average representation. 

An important property of the MAR is that 

q(y(t)l~.(t - a)) = Jma(u)~( t  - du) for all a > 0 . 
a 

Using the process y, we define another stochastic process in discrete 
time Y : I x Q 4 Rn on the same probability space (Q, S, P), by 
setting 

(2) Y(t,w)=y(t,w) forall ~ E I ,  allw E R  

where I is the set of all integers. We will call Y the sampled process. 
In our notation, we will suppress the dependence of Y on w. 

Most of this paper relates the MAR of y to the MAR of Y, so that 
we have to guarantee that the MAR of Y exists. 

Indeed, we can see that Y inherits all the 'good' properties of y. 
By definition, Y satisfies assumptions 1 and 2. We show next that Y 
is also linearly regular. 

Let {xk) be any sequence of random variables. By definition of 
mean square convergence, z k  4 0 as k 4 oo if and only if var(zk) -+ 0 
as k + oo. Since for each integer s Hy(s) C Hg(s), we have 

Since y is assumed to be linearly regular, the term to the right of this 
string of inequalities goes to zero as s -+ -ao, so that the variance of 
q(K(t) 1 Hy (3)) also goes to zero, and Y is linearly regular. 

Hence, the MAR of Y exists, and we can write 

where As are n x m' matrices, and c is an m'-dimensional vector of 
white noises with 

E(e(t) . d(s)) = 0 if t # s 
= C  if t = s .  
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Note that, unlike in the continuous time case, we do not require that 
the elements of e be uncorrelated contemporaneously. 

The requirement that (3) is the fundamental moving average r e p  
resentation for Y guarantees that 

00 

q(Y( t ) lHy( t  - r ) )  = Ak e(t - k) for any integer r 2 0 . 
k=r 

We will say that ( and e are fundamental for y and Y ,  respectively; 
it can be shown that H y ( t )  = HC(t)  and H y ( t )  = Hc(t).  

It is possible to normalize the discrete MAR so that the Ak's and 
e are uniquely determined. In our study, different normalizations will 
be useful for different purposes, and we leave this question open for the 
moment. 

We can extend the function a to the negative reds by setting a(u)  = 
O if u < O and, analogously, we set At = O for any integer k < 0. After 
doing this, we can express (1) and (3) in convolution notation: 

y( t )  = a * ( ( t )  t E R 
Y ( t ) = A * e ( t )  t E I .  

2. The Innovation of the Discrete Sampled Process 

Throughout this and the next two sections, we normalize the dis- 
crete MAR by setting ei(t) = x(t) - r)(Y1:(t)lHy(t - I ) ) ,  i = 1, . . . , n; 
that is, e( i )  is the vector of one-step-ahead innovations in Y. 

As Hansen and Sargent (1984, reprinted as Chapter 4 of this vol- 
ume) point out, the innovation in discrete time can be written as 

where Bi = q ( y  (t)l  Hy ( t  - 1))  - q(Y( t ) l  Hy ( t  - 1)) .  Clearly, since Hy ( t  - 
1) c Hy(t - I ) ,  we have Bf E Hy(t - 1) = HC(t - I ) ,  so that Bt I 
J: a(u)C(t - du). In words e( t )  is composed of two orthogonal parts: 
the one-step-ahead innovation in continuous time, and the difference 
between the one-step-ahead projections in continuous and in discrete 
time. By applying the law of iterated projections we have that 

so that Bi could be interpreted as the error made when we try to predict 
the projection in continuous time with sampled data. 
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From now on, we will assume that y has full rank. This is equivalent 
to assuming that the spectral density of y is positive definite at almost 
every frequency. This guarantees that Y has full rank as well, because 
the spedtral density of Y is given by 

(where fx denotes the spectral density of x ) ,  so that jy is positive 
definite almost everywhere.2 Hence, m' in the MAR of Y is equal to n. 

Since Bt E HC ( t  - I), there exists a function c: [l, oo) RnXn 
such that3 

B, = iOO c(u)c ( t  - du) . 
If we let c(u) = a(u)  for 0 5 u < 1, equation ( 4 )  tells us that e is related 
to C by: 

Hansen and Sargent (1984) point out that one implication of (6) is 
that the one-stepahead prediction .error e( t )  will in general be wrre- 
lated with innovations in continuous time that have happened before 
t - 1. Also, they characterize c for the case that Y has an autoregressive 
representation. 

Next, we give a general characterization of c in terms of a which 
will be useful later on in the paper. First of all, observe that using the 
same line of argument that led us to equation (6), we can conclude that 
thereexists a function h such that 

q(Y( t ) lHy( t  - 1 ) )  = /- h ( u ) ( ( t  - du) 
1 

where h : R -, RnXn. Clearly, by the definition of h and c, we conclude 
that c = a - h. We will now characterize h. 

Define the space of functions L: 

where, the sign 1 1  - 1 1  inside the integral refers to the Eucledian norm in 
Rn. We will adopt the convention that each f ( u )  is a row vector. We 
endow the space L$ with the inner product 
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It can be shown that this is a legitimate inner product, and that L: is 
a complete metric space in the metric induced by this inner product. 
Thus, L: is a Hilbert space. 

Let us call a; the ith row of a, so that ai : R -+ Rn, and a(u) = 

. Clearly, each a; belongs to L:, since: 

The following proposition displays a relationship between a and h 
in terms of the space L:. 

Define the set A C Lz as follows: 

for a,ll k = 1, 2, . . . , j = 1, . . . , n. Therefore, the orthogonality condi- 
tions in L: are satisfied with q(ailA) = hi, and the only thing that is 
left to show is that hi E A. 

By definition of q (Yi(t)lHy(t - I)), there exists a sequence {z,) 
of random variables such that z,, = Cr=y=l CjRl A;, Yj(t - k) for some 
coefficients A;, and a finite s,, and such that {z,,) satisfies 

I' (8) var [ r ) ( ~ ( t ) l ~ y ( t  - 1)) - z,,] -+ o as v -+ m . 
t 

J 

In words, A contains all finite linear combinations of the functions IIhi - full2 = var [Jm[hi(u) o - fp(u)]((t - du)] = 
aj(u- k) for j = 1, . . . , n and k = 1,2, . . ., and the limits of convergent 
sequences of such linear combinations. = [ ~ ( K ( ~ ) I H Y ( ~  - 1)) - A!, l m O D y ( u  - k ) ~ ( t  - au)] = 

In the first section we defined the projection of a random variable k ,  I 
on a certain set of random variables. We can now think of doing the 
same with functions in L; : for a given f E L: and a set S C L;, we V= [ q ( ~ l ( t ) l ~ ~ ( t  - l))-E X;,jc(t - k)] 40  as v -+ m 
define the projection of f on S denoted by q (f IS) as the element of S k,  j 

a n .  
A = c l ( f c t ~ :  f ( u ) = x  x da j (u -k) fo rsomef in i t es  

k = l  j=l 

and some pi E R} . 

such that 

d(?  IS), f )  5 d(g ,  f )  for any 9 E S 

Consider the functions f, given by fv(u) = CPzI E;=l At;, aj(u - k) 
for v = 1, 2,. . .. Clearly f, E A, and it is easy to show that hi E L:. 
From these observations, it is clear that we can write 

in the distance induced by the inner product of Li. 

For each i = 1, ... n, 4 

hi = q (ailA) in the metric of L: . 
Proof; Fix i. Since A is a closed linear subspace of a Hilbert space, the 
projection q (ailA) exists and it is the only element of A for which the 
following orthogonality conditions hold: -1 

[a; - 7 (ailA) I f for any fd. But I 

where we have used (7), the fact that a j  (u - k)((t - du) = 1 .  aj(u) 
C(t - k - du) = Yj(t - k), and (8). Therefore, f, + hi and, since A is 
a closed set, hi E A. I 

This proposition tells us that hi is (very close to) a function of the 
form Xk a(u - k), Xk E Rn, with the Xa's chosen so as to make hi 
"as close as possiblen to ai (where "closen is in terms of the distance 
.f llhi - ai1I2).' 

Once we have characterized h, we can find c in equation (6) by 
setting c = a - h.6 

The characterization in Proposition 1 tells us the nature of h, and 
therefore of c, as functions in L:, and dows us to handle examples 
quite easily. Later in this paper, we state some other properties of h. 

The next proposition is very easy to prove, and is stated mainly for 
future reference. 
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Pro~osition 2: For any given i = 1,. . . n, the following are equivalent: 1 
i )  ~ ( u )  = 0 for almost every u 2  1 

i i )  ~ ( K ( t ) l H ~ ( t - l ) ) = ~ ( ~ i ( t ) I H y ( t - l ) )  
i i i )  ai(u) = q(a;lA)(u) for almost every u >_ 1 . 

Proof: For i) + i i ) ,  use 
I 
! 

Now, since a = c in the interval [0, 1) we get i i )  by equating the right 
hand sides to these two equations. 

To show i i )  + i i i ) ,  we note that i i )  implies SpO hid( = JpD aid(, 
and use the comment in footnote (6). 

That i i i)  + i ) ,  is obvious, since c; = ai - ~ ( a i l A ) .  I 
3. MAR of the  Sampled Process .-I 

In the last section, we found a characterization of the one-step- 
ahead innovation in discrete time in terms of the underlying wntinu- 
ous time process. We are now in a position to characterize the MAR 
coefficients of Y. 
Provosition 3: The matrices Ak in the MAR of Y are given by: - 1  

where c =  a - q ( a  ( A) a -  h. 

Proof: Let V = E [ e ( t ) .  e(t)']. Now, 

P a ( u  + k)c(u)'du 

where the first equality is easily derived by expressing Y in its MAR, 
and where we use (6). Finally, since 

V = E [e ( t ) .  s(t)'] = p c ( u ) ~ ( u ) ~ d u  
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and the assumption that y is full rank guarantees that V is invertible, 
we have shown the proposition. I 
In convolution notation, this result can be expressed as: 

(10) At = [a*cr(k)] [ C * C T ( ~ ) ] - ~  for all k = 0, 1, . . . 
where c ( u ) ~  = c(-u)' for all u. 

Proposition 3 tells us that Ak is a weighted average of the function 
a over the interval [k, m) with c as the weighting kernel. 

We saw in the last section that c; = a; - q(a;lA), so that the ith 
row of c is the error made when we project a; on the set A. It is easy to 
show that for any function f in A, f (u) = [O, . . . , 01 for all u E [O, 1): 
SO that q(ailA)(u) = 0 and ~ ( u )  = ai(u) for u E [O,l).  For u > 1, if 
q(ailA) is any good in approximating a;, we would expect ~ ( u )  to be 
small, and the graph of the elements of c; will look more or less like 
Figure 1: 

Figure 1. 

This illustrates the fact that c will in generd give most of the weight 
to values of a on the interval [k, k + 1 ) .  On the other hand, c will give 
more or less weight to values of aij on the intenml [k+ 1, oo) depending 
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I 
on how large cij is in the interval [I, w); but since 

we have that ci is small on the interval [I, oo) when the projection in 
discrete time approximates well the projection in continuous time. In 
this case, At depends largely on values of a in the interval [k, k + 1). 
In the extreme case that those two projections are equal, Proposition 
2 applies, and: 

so that Ak only depends on values of a on the interval [k, k + 1). 
There are certain similarities between formula (10) and the formulas 

that Sims and Geweke obtain in their work on time aggregation of the 
distributed lag model. In particular, in the distributed lag model the 
discrete parameters are also obtained by applying a weighting kernel 
to the continuous time parameters. However, in our case, the kernel in 
(10) is one-sided, and in general discontinuous, while the opposite was 
true in the distributed lag model. 

Next, we are going to substantiate our claim about the non-continuity 
of c. For this purpose, it is enough to think of the case of a univariate 
process. Assume that a is continuous everywhere except at zero (in 
other words, a(0) # 0). Since c(u) = a(u) - CZ1 Xka(u - k), for any 
integer, Y, c(v) = a(u) - Ct;B1 Xka(v - k), because a(u - k) = 0 for 
k > v. Therefore, at u = u the function c is the sum of u + 1 functions 
such that one of them is diswntinuous at u = Y (because, for k = Y in 
the summation sign above, X,a(v - Y) = X,a(O), and we assumed that 
a was diswntinuous at u = 0) and the remaining Y functions are con- 
tinuous at u = u. Therefore, if Xk > 0 for all k, c will be diswntinuous 
at all integers. 

Equation (10) shows how the coefficients in the ith row of Ak (i.e., 
the coefficients of the ith variable x) are affected by all the rows in a, 
so that the iLh row of Ak will in general depend on the moving average 
coefficients in continuous time of all the elements of y. This is the phe- 
nomenon that Geweke called "wntaminationn, and that also appeared 
in the model he studied. The coefficients Ak will be "contaminatedn 
even when the projections in continuous and discrete time coincide, as 
formula (11) shows. The only general case in which contamination dis- 
appears, is when a;, G 0 for all i = j (i.e., when the two matrices to 

the right of (10) are both diagonal). This is a very special case, since 
it amounts to assuming that E(yi(t) - yj(tl)) = 0 for all i # j, and all 
t, t' E R 

The rest of this section discusses what distortions can be generated 
by temporal aggregation in the MAR in view of the above results. 

We begin by displaying one type of distortion that will be present 
in most cases. For any integer Y, we can write 

and 
u-1 

C A~~CA:, t ivai (~)ai (u) 'du , 
k=O 

where Ak is the ith row of Ah. In the one variable case, this can be 
written as 

One way to interpret this is that the first coefficients of the discrete 
MAR will be too large in absolute value so that, for a univariate model, 
if we plot the discrete and continuous MAR'S in the same graph, we 
will obtain a version of Figure 2. 

6 

- rrmrhPorrbMR - brsldtb.mdf*isn 
in tho d i i  MAR 

* 
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We could distinguish two reasons why the discrete MAR can be a 

-1 
~(alA)(u) for d l  u I 1, so that Proposition 2 applies, and we can use 

bad approximation of the continuous MAR; one is contamination, and formula (1 1) to conclude: 

the other Ak depending on values of a on the interval [k+l, 00). We now 
give examples that illustrate the type of distortions the second 'reason" = [A1 e-*(u+k) du] . [11 e-~2* du] - e - ~ k  
can generate, and in what cases this distortion will be severe. We will 

- 
only consider one-variable examples, in this section, since their effect is 
present in these cases. These examples, illustrate how Propositions 1, Examule 3.2: If a is constant over intervals [k, k + 1) and y one-dimen- 
2 and 3 can be used to analyze time aggregation. 

Examples 3.1 and 3.2 display two cases in which the projections 
sional, letting r(t) = S,' ((t - du) and Ah = a(k), we can write: 

in continuous and in discrete time coincide, so that c(u) = 0 for 
u E [l, rn), and the shape of Ak is similar to the shape of a. In Exam- 
ple 3.3 we find a very simple MAR in continuous time that will have a k = ~  

distorted discrete MAR. We have said that when c is zero in the interval 
[I, oo), At is an average of a in the interval [k, k + 1); but even in this This expresses Y in moving average form. It has to be true that the 

case, if c is positive and negative in the interval [0, I), Ak will not be F'ourier transform of a has no zeroes on the right half of the complex 

a proper average of a in the interval (0, I); we illustrate this point in plane. This guarantees that the Fourier transform of { A ~ )  has no 

Example 3.4. Example 3.5 effectively shows one way to construct con- zeroes inside the unit.disk, and that this is associated with the Wold 

tinuous MAR'S that will generate distorted discrete MAR'S. Example 
representation of Y. 

3.6 discusses the effects of unit-averaging. Even though the main mes- In this case, as in the previous example, the discrete MAR equals 
sage of Example 3.6 is that when a(0) = 0 and a is continuous, we may the continuous MAR sampled at integers, and from the way e was 
expect distortions in the discrete MAR, Example 3.7 shows that this is chosen, it is clear that the one-step-ahead innovations in discrete and 
not always true. Finally, Examples 3.1, 3.4 and 3.7 are concrete illus- continuous time coincide, so that the one-step-ahead projections in dis- 
trations of the aliasing problem. They show three different continuous crete and continuous time are equal. 

MAR'S that generate exactly the same sampled process: in particular, hmddI!& Hansen and Sargent (1984) showed that for a MAR a that 
Y is an autoregressive process of order one in all these examples. 

Example 3.1: Probably the simplest case we can deal with is the AR(1) - a is continuous at all u >_ 0 

process in continuous time 

y(t) = e - h ~ ( t  - du) t E R, A > 0 . if c = 0 almost everywhere in [l, oo) then Y has an ARR of order 1. 
In our framework, this is displayed in the following way: if Y had 

In this case, e-xy(t -1) = Jy e-*"((t -du) = ~ ( y ( t ) l H ~ ( t -  I)), and an autoregressive representation of order more than 1, some Ak would 
e-Xu y(t - 1) E Hy(t - 1); the orthogonality conditions in continuous be different from zero for k > 1. Then q(alA) would be discontinuous 
time imply that, in ~articular, [Y(t) - e" Y(t - I)] I Y(t - k) for all at u = k (this can be deduced by using the line of argument on page 
k = 1, 2, . . ., so that e - X ~ ( t  - 1) is the projection in discrete time. 243 showing that c is in general discontinuous), so it is not possible 

Therefore, Y has an autoregressive representation (henceforth ARR) 
of order 1, with parameter equal to e-A, so that the MAR of Y is given 

that rl(alA)(u) = a(u) for a.e. u E [I, 00). Thus, c # 0 in a subset 
of [I, 00) of positive measure. 

by: This implies that apparently well'behaved a's will yield distorted 
Ak = e-Xk = a(k) for all integers k . Ak's. For example, the MAR given by : a(u) = e-Al" + =-Azu has a 

For illustrative purposes, we next find Ak by using propositions 1, function c with SpO llc112 > 0. Indeed, if this was not true, then c 0 
2, 3. Since e-*a(u - 1) = a(u) for all u 1 1, clearly e-Aa(u - 1) = almost everywhere in [l, oo), and by.Proposition 2 there would exist a 



constant p such that p a  (u - 1) = a(u) for all u _> 1. In particular, for that Ak is largely a weighted average of a on the interval [k, k + I), 
u = 1 and u = 2 this would imply where the weights are given precisely by a on the interval [0, 1); there- 

fore, if a takes both positive and negative values, At is not a proper 
= e-A1 + e-Az and p(e-A1 + e-A' ) = ,-A12 + ,-A22 average of a on the interval [k, k + 1). 
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which in turn would imply (e-'I + e - ' ~ ) ~  = e"12 +e-Az2 , which is not I Exam~le 3.5: For {Ak) not to be distorted, it is necessary that: 
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possible. 

Exam~le  3.4: Let a be as depicted in Figure 3. 

so that, unless there exits some constant p such that a(u) = p a(u - 1) 
for a.e. u E (1, 2), we will have distortions of the discrete MAR. Keeping 
this in mind, it is quite easy to generate examples in which j; c2 is very 
large, by considering functions a that look very different in the interval 
[O, 1) and in the interval [I, 2). The eraphs in Figure 4 illustrate this 
situation. 

In Figure 3, la(u)l = e-'% for all u 2 0, but for each integer k, if 
u E [k + 17, k + I), then a(u) < 0. 

Again, e%(u - 1) = a(u) for all u 2 1, so that, by Proposition 
2, v(Yi( t ) lHv( t -  1)) = e-'~(t). Note that Aa = e-lk, and thediscrete 
MAR fails completely to capture the oscillations in a. 

The interest of this example is to show that it is possible for the 
projection with discrete data to be as good as the projection in contin- 
uous time, and yet the discrete time MAR be very different from the 
continuous MAR. Indeed, in this case we can apply Proposition 2 to 
conclude that the two projections coincide, but the discrete MAR fails 
completely to capture the oscillations in the continuous MAR. We may 
expect this to happen when a is both positive and negative in large 

i parts of the interval [0, 1). k c a l l  that, from formula ( l l ) ,  we know 
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Examnle 3.6: It has been suspected for a long time that when a is 
continuous as a function defined on the whole real line (i.e., when a(0) = 
O), the discrete MAR does not approximate a well. Hansen and Sargent 
(1984), have an example with large distortions. We will now argue that 
this is in fact the case if a is continuous and positive at u = 1. 

We have argued before that for u E [I, 2) h(u) = p a(u - 1) for 
some coefficient p. Therefore, if a is continuous and strictly positive 
for all u > 0, but a(0) = 0, the graph of a and h will be as depicted in 
Figure 5. 

Temporal Aggregation of Economic Time Series 255 

I 
1 Example 3.7: In view of the previous example, we should not conclude 

that any MAR in continuous time with a(0) = 0 will give a bad ap- 
proximation in discrete time. For example, take a function a that is 
continuous in the interval [0, 11, satisfies a(0) = a(1) = 0, and can be 
extended to [I, oo) by setting: a(u) = &(u - 1) for some 0 < t < 1, for 
all u E [I, 00); the graph of this function will be as depicted in Figure 
6. 

Because of the way a was defined, clearly Proposition 2 (ii) applies, and 

v(Y(t)lHy(t - 1)) = v(y(t) I HY(t - 1)) 

Figure 5. so that Y has an autoregressive representation of order 1. 

As illustrated in Figure 5, J; c2 = ~ . ( a  - h)2 is large in relation to ~ 

ji 2 = Ji a2. In this case, Ak will depend more on values of a in the 
I interval [k + 1, k + 2) than on values of a in [k, k + 1). 
I 
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4. Granger Causality 

Consider a bivariate process in continuous time y, such that y2 does 
not Granger cause yl. It is well known that, in general, Y2 will Granger 
cause Yl. It is possible to deduce this by combining results in Sims 
(1971, 1972b).' 

There are cases, however, in which the absence of Granger causality 
from the second variable to the first, does carry over to the sampled 
process. One case in which this happens is when yl and y2 are uncorre- 
lated at all dates; then fi and Y2 will also be unwrrelated at all dates, 
so that past Y2's will not help in predicting Yl. Another case is given 
by the following proposition, which says that if the first variable can be 
predicted with equal accuracy whether we use continuous or discrete 
data and if y2 does not Granger cause yl, then Y2 does not Granger 
cause Yl. 

Proposition 4: If q(yl(t) I Hy(t - 1)) = q(Yl(t) I Hy(t - 1)) and y2 fails 
to Granger cause yl, then Y2 will also fail to Granger cause Yl. I 
Proof: The conditions in this proposition imply: 

therefore q(fi(t) I Hy (t - 1)) E Hyl(t - 1) n HY(t - 1). By definition, 
Hyl(t - 1) n Hy(t - 1) = H&(t - l), so that q(fi(t) I H,(t - 1)) E 
Hyl (t - 1) and, since HX (t - 1) c H,(t - I), we have that q(K (t) I 
Hy(t - 1)) = q(fi(t) I Hy, (t - 1)). Combining this last equality with 
the first condition of the proposition tells us that q(K (t) I Hy, (t - 1)) = 
v(fi(t) I HY(t - 1)). 1 I 

though y2 Granger causes yl. Consider the MAR in continuous time 
given by the functions aij depicted in Figure 7. 

Figure 7. This type of result is not surprising. The reason that, in general, Y2 
will Granger cause Yl even when past y2 do not help in predicting yl, 
is that the values of yl between integers enter in q(Yl(t) I H,(t - 1)). 
Then, in the discrete projection, past values of f i  wuld help predict 

I 
Yl because they help predict values of yl between integers. However, 
in the case that the above proposition considers, there is no point in 
trying to predict the values of yl between integers, so that there is no 
room for past Y2 to help predict Yl. In this case, clearly cov(fi (t), Yz(t - 2)) = r[al1(u)azl(u - s)  + 

We can construct cases in which the effect of temporal aggrega- a12(u)a22(u - s)] du = 0 for integers s 2 1, and past f i  will not help in 
tion on Granger causality is the opposite of the effect described at the predicting current fi. But, since neither al l  nor a12 is identically zero, 
beginning of this section, that is, Y2 does not Granger cause Yl even 

- I y2 Granger causes yl. 

I 
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Another case in which this happens is shown in Figure 8. 

Figure 8. 

Again, Yl (t) will be uncorrelated with past Y2's and Y2 will not Granger 
cause Yl. 

These two examples are very special cases; the characteristic they 
have in common is that much of the variance of x ( t )  is due to innova- 
tions in the interval [t, t - 1). 

5. Unit-Averaged D a t a  

Sometimes the data available to us on a given variable consist of 
averages of observations over a certain period of time. For example, our 
monthly data on a given series may consist of the average of the weekly 
data for that month. Say that we have unit-averaged observations on 
the first m-variables. We can model this situation as follows. We 
observe the process Y in discrete time given by 

1 
~ ; ( t , w ) = A y i ( t - s , w ) d s  i = l ,  ..., r n ;  
Y;:(t,o)=yi(t,w) i = m + l ,  ..., n, forall t E I ,  andall ~ € 0  

i 
I where the above integral sign refers to Lebesgue integral. 
1 Clearly, any of the unit-averaged variables X , i 2 m, can be 

I obtained by sampling the continuous time process given by: 

1 ' 
&(t) = / y;(t - s)ds all t E R . 

0 

In order to apply the results of Section 3, we have to find the MAR 
of the continuous time process 5. Let us define the function L : R + R 

I as 
l(u) = 1 if u E [O,1) 
.f(u) = 0 otherwise ; 

! so that we can write 

i and we have that 

1 (15) jgi(w) = i(w)fgi(w)?(w) = i(w)iii(w)ii:(~)?'(w), w E [-a, 'K] 

where jx denotes the spectral density of X, and & denotes the Fourier 
transform of the function b; in the above equation we have used the 
formula for the spectral representation of linear combinations of random 

1 variables (see Rozanov (1967)). Since t has no zeroes in the left half 

I 
plane, (15) indicates that !*a; gives the MAR for Pi, and we can write 

I where 

I The next proposition states that ii is always smoother than a. As 
usual, we denote the space of functions that can be differentiated s 
times by C8. 

. i Pro~osition 5: For any i ,  j = 1, . . . , n 
i) If aij € L1 [i.e., J 1.61 < m] then Zij  is continuous. 

I ii) If, in addition, aij E C8 then Zij E C8+'. 

i ' 
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Proof: 
i) Define F(x) = J2, aij(s)ds; then F is an indefinite integral; there- . . - - 

fore, F is continuo~s.~ Since iiij(u) = c-l aij(s)ds = F(u)- F(u- 
I), ii;j is continuous. 

ii) If aij is continuous at x, then F has a derivative at x, and Ff(x) = 
aij(x).10 I 

Note that Proposition 5 refers to 5 a s  a function defined on the whole 
real line, so that, since G(u) = 0 for u < 0,  i) in Proposition 5 implies 
that G(0) = 0. Remember that Example 3.6 dealt with the case of a 
continuous function a. The comments made there apply to this section. 

The rest of this section analyzes the effects of using unit-averaged 
and sampled data at the same time. 

Consider a Zdimensional process in continuous time; we have sam- 
pled observations on the second variable, but we have unit-averaged 
observations on the first. It is common practice in this case to estimate 
a Pvariable system in discrete time, consisting of point-in-time observa- 
tions for one variable, and unit-averaged observations for the other. We 
are going to argue that this practice will systematically overstate the 
importance of the second variable (consisting of sampled observations) 
in predicting the first one. 

We will discuss this by giving an informal, general argument, and 
by displaying several simulations. 
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The general argument goes as follows. Consider a twedimensional 
process y with MAR represented by the graph in Figure 9. 

The discrete system obtained by mixing unit-averaged and sampled 
data in the way described above, is equivalent to sampling the contin- 
uous time process 9(t)' = (ijl(t), y2(t))'. The MAR of # is given by 

, where 81 is given by equation (IS), so that the graph 
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of ir will be as in Figure 10. Then, g has to look like Figure 11. 

I - 4  - g 

Figure 11. 

However, if we did the same with 6 instead of a, and let ij(u) = 
Cf!=l Atirl(u - k). and then compare ij with 61, we have a version of 

I 

i 
Figure 12 (see Example 3.6). 

i i 

Figure 10. 

From the discussion in Section 2 (and the appendix) we have learned 
that, letting pk E R~ be the vectors such that 

the p's are those vectors that make the function hl(u) = CEl pk a(u- 
k) as close as possible to the function a1. 

We will argue that, if Yl is unit-averaged, the portion of the variance 
of Yl explained by Y2 will be larger than if both variables were sampled, 
due to the fact that the first elements of the vectors pk will, in general, 
be smaller. 

We will look, first, at the sampled system. Let us consider how 
much the first elements of pk can contribute to make hl close to al. 
Assume we set the second element of pk equal to zero, and we try 
to approximate a1 with a function of the type g(u) = CAkal(u - k). 

The point of these graphs is to demonstrate that we can approximate 
a1 better with a function like g than we can approximate irl with a 
function like ij. 

Now, since the vectors pk are chosen in order to make hl as close 
to a as possible, we would expect that after unit-averaging the first 
elements of pk are smaller. Therefore, past fi  will not be as helpful in 
predicting fi  (t) if f i  is unit-averaged.ll 

The same intuition can be used to justify the claim that if only Yl 
is unit-averaged, past Yl will not be as effective in predicting 5 as in 
the case that both variables are sampled, and that the same is true if 
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we compare the mixed system with the system in which both variables 
are averaged. 

Next, we will present a few simulations that support our claims. 
We have simulated several AR(2), discrete time processes with two 
variables. Then we have temporarily aggregated them in three ways: 
the "sampled systemn is obtained by sampling both variables every 
three periods; the "averaged systemn is obtained by taking the aver- 
age of each variable over three periods; finally, the "mixed systemn is 
obtained by averaging the first and sampling the second variable every 
three periods. This does not correspond exactly with the situation dis- 
cussed above, since the variables are not averaged in a continuous way, 
but it can be interpreted as an approximation; furthermore, it corre- 
sponds to a situation that arises often in practice, when the researcher 
has two variables recorded at  different time-intervals (say monthly and 
quarterly) and has to aggregate over time one of the variables. 

We have run a VAR for each of these temporally aggregated pro- 
cesses. In the tables below we report the decomposition of variance 
for each process. Since the variance decomposition can be affected by 
the order in which the Choleski decomp.osition is obtained, we have 
computed the decomposition for both orderings in all the cases.12 

If our claims are true, the percentage variance of Yl and f i  ex- 
plained by Yl would be smaller in the 'mixed" than in the other two 
systems. In these simulations, the effect of mixing averaged and sam- 
pled data is almost always the one predicted on the last page, and in 
some cases the changes are very large (particularly in Table 1). 

Only in one out of the six simulations we report did the change 
in the decomposition of variance of one of the variables go clearly in 
the other direction (Table 2, first ordering, decomposition of Yl). Far 
from proving a theorem, we have just presented a heuristic argument, 
so that, probably, our intuition is not true for all processes. On the 
other hand, the result in Table 2 may be due to sampling error or to 
the fact that, as we pointed before, the type of unit-averaging that 
we have performed in the simulations is not quite the continuous time 
averaging discussed in the rest of this section. 

In any event, these simulations do support the claim that, in gen- 
eral, by unit-averaging the first variable, Yl becomes less important in 
determining both Yl and Y2. 

Table 1 

Ordering 1: Yl , Y2 

Variance of ... Percentage explained by Yl in each system 

Y1, Y2 sampled Yl, YZ averaged Yl aver. Y2 aarnpled 
56 35 15 

Ordering 2: Y2 , Yl 

Variance of ... Percentage explain6d by Yl in each system 

Yl, YZ sampled Yl, Y2 averaged YI aver. Y2 sampled 
Yl 85 93 .6 
yz 85 92 .2 







Table 6 

Ordering 1: Yl , Y2 

Variance of ... Percentage explained by Yl in each system 

Yl, Y2 sampled Y1, Y2 averaged Yl aver. Y2 sampled 
YI 90 93 78 
y2 20 36 15 

Ordering 2: Y2 , Y1 
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6. Convergence of t h e  Discrete M A R  as t h e  Sampling 
Interval Goes t o  Zero 

I For each 6 > 0, we define a discrete stochastic process y6 on our 

i original probability space, by setting 

~ ' ( t ,w)=y(t6 ,w)  f o r a l l t ~ 1 ,  all w ~ f l  

and let the MAR of y6 be: 

We are interested in determining under what conditions and in what 
sense the 6-discrete MAR converges to the continuous MAR, and the 
discrete innovation converges to the continuous one, as the sampling 
interval 6 goes to zero. 

Note that the way we have defined y6(t), this 't' does not corre- 
spond to the point 't' in real time (instead, it corresponds to the date 
't6'). 

We will change our notation slightly in this section, by setting: 

Variance of ... Percentage explained by Yl in each system I Hp(q)  = cl { linear subspace spanhed by y6(t)  for 6t 5 q )  for q E R 7 
\ I 

Yl, Y2 sampled Yl, Y2 averaged Yl aver. Y2 sampled 
YI 88 86 81 

so that 'q' now refers to the corresponding date in real time. Actually, 

Y2 18 3 1 18 Y6(q) itself may not be defined (when q/6 is not an integer). We will 
I write y6(t/6) regularly, assuming implicitly that this is well defined, 

I 
that is, assuming that 116 is an integer. 

One type of convergence that will prove useful for our purposes and 
1 that has interest in itself, is whether, for a given CY > 0, the projection of 

y(t+a) on information up to t in continuous time, can be approximated 
I arbitrarily well by observations of y6 up to 't' ('t' a date in real time), 

as 6 goes to zero. The next Proposition deals with this question. 
In this section we will use repeatedly the following property of 

i Hilbert spaces: let S be such a space; for any sequence {x,) in S such 
that x,  converges to x (in the distance induced by the inner product 
on S) then (x,, y) + (x, y) as v -+ oo for all y E S. 

Let B : R + RnXn be the autocovariance function of y, defined 

I 
1 by: 

I 
B(s)= E(y(t+s)-y(t)'), s E R .  

&emma 3: Let y satisfy assumptions 1, 2, 3 in the introduction, then 
1 1 y(t + s) -+ y(t) in mean square as  s + 0. This in turn implies that B 
I 1 is continuous at 0. 

I i 

I .- i 
., . 

I 
I 
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I 

Proof: For any i = 1,. . . ,n, using the MAR of y, we have I 

By Theorem 8.19 in Wheeden and Zygmund (1977), we know that any 
square integrable function f : R -4 R, has the property that J I f(u) - 
f (u + s)I2 goes to zero as s goes to zero. Since each aij is square 
integrable, each element in the above sum goes to zero as s + 0. Thus 
yi(t + S) -t yi(t) in mean square. 

Therefore, by the property of Hilbert spaces stated above, we have: 

and B is continuous at  0. I 
Pro~osition 6: If y satisfies assumptions 1,2,3 in the introduction, then 

for any i = 1,. . . , n , a > 0, and t E R. 

Proof: Because of stationarity, it is enough to show the theorem for 
t = 0. 

By definition of Hy(-a), there exists a sequence of random vari- 
ables {a,) such that each a, can be written as 

l v  l 

a, = [A!] y(t:) for some A j  E Rn, s, finite, and t; < -a , 
k=l 

with the property that a, + q(yi(0)lHy(-a)) as Y -+ 00. 

Now choose any 8 > 0, and choose Y' such that 

First, we want to show that for each 6, we can select an element 
b6 of Hya(-a) such that b6 + a,, as 6 1 0 (remember that we already 
fixed v'). Set: 

where t i  is the closest number to tf that is divisible by 6; here t i ,  ~f 
and s, are those in the above expression for a,. 

Using the previous lemma, since t i  + t f ,  clearly y(tf) + (tf) 
in mean square as 6 1 0, so that b6 + a/. Hence, for the 8 chosen 
above, there exists some 6' such that if 6 < 6' we can apply the triangle 
inequality to conclude that 

s d[b6, a,,] + d[a,, ?(yi(o)l~v(-a))] < 912 + 912 = 8 . 
Finally, the law of iterated projections implies that 

so that, given 8, there exists 6' such that for any 6 < 6 

and we have shown the proposition. I 
This proposition assures us that the convergence of the a-step 

ahead projections obtains under very general conditions. Next we turn 
to the discussion of the convergence of the MAR 

The first problem we have to deal with when comparing different 
&MAR'S is how to normalize them. There ate two standard ways of 
normalizing a discrete MAR: the first requires that e(t) equals the one- 
step-ahead innovation, the other is to multiply this innovation by one 
of the 'square roots' of its variance-covariance matrix, in order to get 
a white noise in the MAR that has a covariance matrix equal to the 
identity matrix. 

Clearly, if we insist that c6 be e ual to the one-step-ahead innova- 7 tion (i.e. that c6(t) = Y6(t) - q(Y (t)lHyc(t6 - 6))) we will not get 
convergence to the continuous MAR, since A! = I for all 6 (where I is 
the identity matrix), and a(0) need not be close to I. Later on we will 
discuss another important problem that this normalization presents. 

On the other hand, we should not insist on normalizing by setting 
E(e6(t) . c6(t)') = I either. In this case, it can be shown that as 6 1 0 
the 6-MAR goes to zero for any process. 
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We propose the following normalization. Let t6 be the one-step- 
ahead innovation of the &process, i.e., t6(t) = ~ ~ ( t ) - q ( Y ~ ( t ) J ~ ~ s ( t 6 -  
6)). We define the white noise e6 in (17) as 

(18) ( t )  = ( 6 )  w ~ ( )  where WW' = E [(t6(t) t6(t)')]-' . 
There are many matrices W that satisfy the above condition. By plat- 
ing some additional requirements on W, we can resolve this uniqueness 
problem.13 

This is a natural normalization in the sense that e6(t) mimics the 
properties of a random measure in continuous time (see section 1). 
Recall that the crucial property of a random measure C is that for 
any interval A C R of length 6, E(C(A) . ((A)') = 6 I. We could 
interpret e6 as a random measure defined only on intervals of the form 
(k6, (k + 1)6), and assigning measure r6(k) to lach of these intervals. 
Then, the analogue to the above property of C is to require that ~ ( e ~ ( k ) .  
e6(k)') = 6 I, which is attained with the normalization given by (18). 

This is relevant for econometric practice. If one were to compare the 
MAR'S of two series collected at different intervals, the normalization 
that should be used for each series is the one given by (18). 

Define the function A6 : R 4 RnXn, 

A6(u) = A: for u > 0 , k such that u E [k6, (k + 1)6) 
= O  fo ru<O 

where A: corresponds to a given normalization that agrees with (18). 
In words, A6 is a step function, and the value that A6 takes at each 
step is the value of the MAR coefficient that corresponds to that date. 

We will discuss one sense in which A6 approximates a as 6 1 0. It 
can be easily checked that: 

This tells us that each row of A~ belongs to L:, and it has the same 
norm as the corresponding row of a. 

The next proposition states one sense in which A6 approximates a. 

Pro~osition 7: For any a > 2 0, and any q 2 0: 

t Proof: Fix a and q; from Proposition 6 and the property of Hilbert 

i spaces mentioned above, the following is true: 

Using the MAR of y (in continuous time) we can write p in (21) as 

\-- I  

p = E Lw a(u)((q - du) . [la a(u)((O - du)]'] = la a(u + q)a(u)'du . 

1 It is enough to show that (20) holds for any sequence (6,) such 
!, that 6, 1 0 as v + oo. Let q, be the closest real number to q that is 

i divisible by 6,. Let us define pY by 

P' ' ~[3(9.) [y6*(0) - q ( ~ ~ ' ( 0 ) 1 ~ p ,  (-a))]'] 

Since q, -+ q, y(q,) -P y(q) as v -+ oo, and it is true that lp6,Y-p"~ 4 0 
as v + m. Therefore, using (21), pu 4 p. 

i I Now, using the 6,-discrete MAR of y6# we can show that 

I 
I This, (22), and the fact that p" -, p, finishes the proof for the case 

I p = o .  
The case P > 0 is easily shown by noting that for any function f ,  

I 

The interpretation of this proposition is that the impulse-response 
function in continuous time of innovations that happen during a fixed 
period in real time can be approximated by the impulse-response func- 
tion of innovations over the same period of real time derived from the 
6-sampled model. 

The results reported in this section so far seem to indicate that 
with data collected at fine enough intervals, the discrete time model will 
be a good approximation to the continuous time model. Nonetheless, 
we have to interpret these results with caution. Propositions 6 and 7 
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depend crucially on the fact that we fix a period in continuous time 
first, and then let 6 vary. Also, the result in Proposition 7 depends on 
the normalization given by (18). In the rest of this section, we intend 
to show how important these points are. 

Assume that instead of normalizing e6 by (la), we set it equal to the 
one-step-ahead innovation of the 6-sampled process, so that the MAR 
of Y* is now: 

00 

y6(t)  = A C ( ~ ( ~  - k) for t6(t) = y6(t) - r l ( ~ 6 ( t ) l ~ y c ( t  - 1)) . 
k=O 

I t  makes no sense to ask whether t6(t) converges to some random 
variable, since var(t6(t)) + 0 as 6 1 0, but we may be interested in 
determining if the correlation coefficient between t6 and the &step- 
ahead innovation in continuous time pf 

goes to one as 6 1 0. If this convergence does not obtain, it will cast 
some doubt on the usual practice of interpreting the one-step-ahead 
innovation as an approximation to the innovation in wntinuous time 
over a period of length 6. 

We have not yet explored this type of convergence under general 
conditions, but the next, proposition shows that for a certain class of 
one-dimensional processes in continuous time, p6 does not go to one. 
We denote the first and second derivatives from the right by al(u+) 
and al'(u+). 

Provosition 8: Let a be a one-dimensional, continuous time MAR that 
satisfies: 

i )  a(0) = 0 
ii) a(u) > 0 for u > 0 and u close to zero 

iii) a''(.+) exists at u = 0 
iv) a'(--) is bounded near zero. 

Then p6 does not go to one as 6 1 0. 

Pro_of: (in appendix available from the author). 

The set of MAR'S in continuous time that satisfy the conditions of 
this proposition is an important class of models. Imagine that we have 
a continuous time process with a function a in the MAR that has a first 
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derivative from the right at zero. Then, by unit-averaging this process 
for all t E R, we obtain another process that satisfies conditions i) to 
iv). 

7. Conclusion 

In what follows, we make an attempt to summarize our results in 
a non-technical way.. 

The coefficients of the fundamental moving average representation 
(MAR) of the discrete, sampled process, are given by 

where a is the MAR in continuous time, and c operates as a weight- 
ing function of the continuous MAR. The above equation tells us that 
when the function c is small on the interval [l,oo) At is mostly an 
average of a on the interval [k, k+ I), and we can consider At as a good 
approximation to a in this sense. 

The function c has been thoroughly analyzed in Section 2. There, 
we have seen that c is large in the interval [I, oo) when the projection 
with wntinuous data is much more.accurate than the projection with 
discrete data. 

This restricts largely the type of distortions that can be attributed 
to temporal aggregation: if an econometrician estimates a MAR that 
does not agree with what he expects for the particular problem that he 
is studying, he can ask himself whether the wefficients he observes may 
have been generated by the above formula, given a function a that is of 
the right form. Also, he may have an a priori idea of how good predic- 
tions with discrete data are, compared to predictions with wntinuous 
data; from this, he can form an a priori idea about the function c, and 
guess how distorted the discrete MAR may be. For example, we were 
able to show that a systematic effect of time aggregation is to increase 
the absolute size of the first few wefficients of the MAR. 

In Section 5, we have analyzed the problem of unit-averaging data. 
The formula for the MAR in continuous time that corresponds to unit- 
averaged data is given by (157, and it basically implies that this MAR 
will be smoother, and its mass is shifted one unit to the right, in relation 
to the MAR and the original process. 

Another result of that section is that by mixing variables that are 
unit-averaged and variables that are sampled in the same discrete time 
series, we will systematically overstate the importance of the variables 
that are sampled in determining all the variables in the system. This 
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result is obtained by using the projection approach of section 2, and 
it illustrates how this approach can be used to derive conclusions that 
are relevant in econometric practice. 

Finally, we study some issues related to the approximation of the 
model in continuous time by collecting data at finer and finer intervals. 
We show convergence of the cr-step ahead forecast, and we propose a 
normalization that is convenient for the study of these approximations. 
Convergence of the discrete time Wold decompositions to the continu- 
ous time is studied in Marcet (1987). 

Appendix A: Autoregressive Representation of Y 

We begin this section by noting that the function h in (7), can not 
only be approximated by a function of the form f (u) = C pr. a(u - k), 
for kpk E Rn, but that it actually is such afunction. This is established 
in the following lemma. 

Lemma 1: Given that i = 1, . . . , n, there exist Ak E Rn k = 1, 2, . . . 
such that: 

00 

hi(u) = Xk a(u - k) for almost every u E R 
k=l 

where the Xk's depend on i. 

Proof: 

By Proposition 1, h E A, so that there exist functions f, E L:, 
v = 1,2, . . ., such that f,(u) = Ct;'=l pk,, a(u-k) for some pk,, E Rn, 
and s, finite, and such that f, -+ hi in the metric of Lz as v + w. In 
particular, this implies that 

Since a(s) = 0 for s < 0, each f,, has the property: 

which together with (12) implies that 

Next, we will argue that {pl,v) converges in Rn as v 4 oo. We 
can rewrite (13) as: 

We claim that for any positive definite matrix C, and any sequence 
{x,) in Rn, xnCxn -, 0 if and only if xn 4 0 in R~." ,But the 
assum tion that y is a full rank process in continuous time implies ? that Jo aa' is positive definite, because this is the covariance matrix of 
the one-step-ahead innovation of y in continuous time. Therefore, (13) 
implies that pl,, 4 XI as v -t oo for some A1 E Rn. 

It is easy to show that, if pk,, + Xk for all k = 1,. . . , r  for a finite 
integer r, then p,+l,, -t as v -i oo. To see this, note that 

by the inductive assumption, this implies that J" II(p,+l,, - 
~ r + l , m ) '  a(u)1I2 -t 0, and pr+l,, -t Xr+l E Rn as v -+ oo. 

Now, choose any integer I<. Clearly 

Since the limits are unique, hi(u) = CgI  Xia(u - k) for almost every 
u < I<. Therefore, this equality holds for almost every u E R I 

If we apply this lemma to equation (7), we can write Y as 

so that if we can pull the summation outside the integral sign, we can 
write: 

and in this case Y has an autoregressive representation, with the coef- 
ficients of this representation being the A's in the above lemma. 

To 'pull the summation sign outside the integral" in fact means 
that the following is true: 
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which, by definition of convergence in mean square, means: 

The next lemma gives a sufficient condition for the interchange of sum- 
mation and integration. 

Lemma 2: 1f' the sequence {Ak) is absolutely summable (element by 
element), then (14) holds. 

Proof: 

By applying twice the triangle inequality and pulling the constants 
X out of the norm in LE, we can justify the following steps: 

where I< is constant. If X k  is absolutely summable the right hand side 
goes to zero, and by our earlier comment, (14) will hold. I 

Notes 

1. Rozanov (1967) contains the definitions of linear regularity, station- 
arity, random measures, integration with respect to random mea- 
sures, and a proof of the existence of the MAR in continuous and 
discrete time. Throughout the paper, we will only use orthonormal 
random measures, so that for any pair A, 6' of disjoint Bore1 sub- 
sets of R, E([~(A))~ = [A1 for all i, E(cj(A) . Ci(A)) = 0 if i # j, 
and for any i, j, E(Cj(A) . cj(A1)) = 0. 

2. See Rozanov (1967) for a definition of s'pectral density and its prop- 
erties. Equation (5) is known as the folding formula. In most of 
our discussion, it is quite clear how our results could be generalized 
to the case of a non-full rank process y, but allowing for this case 

would complicate our notation without adding much substance to 
the problem. 

3. See Rozanov (1967), page 3. 

4. Rozanov (1967) observes that the spaces He (oo) (for E an uncorre- 
lated random measure) and Lz are unitarily isometric, because: 

where the first norm is for random variables, and the second r e p  
resents the norm in Lz. This tells us that H,(oo) and L: "are 
arranged in the same wayn (page 3, Rozanov (1967)); therefore, in 
view of equations (1) and (7), we would expect that there was a 
relationship between h and a in terms of the topology of L:. This 
relationship is precisely what Proposition 1 uncovers. 

5. See Rudin, theorems 12.3 and 12.4. 

6. Here, we have used: ~ ( t )  = Jp c dc = Y(t) -q(Y-i(t)lHy(t- 1)) = 
JF(a - h)d('. We also have used the fact that for any f, g E L:, if 
J f de = Jg&, then var [J f de - J gde] = 0, so that 
J 11 f -g 112= 0 and f = g almost everywhere. Therefore, c = a - h. 

7. Since f(u) = x(PIl x:=l Xk, j a j ( ~  - k), if u < 1 then u - k < 0 
for any of the k's in the summation; aj(u - 12) = 0 and f (u) = 0. 

8. Sims (1972b) shows that & does not Granger cause K iff q(%(t) I 
Hy,(t)) = q(h( t )  I Hy,(oo)). But from Sims (1971), it is clear 
that, in general, this equality will not hold for the sampled process, 
even if it holds for the underlying continuous time process. 

9. See Wheeden and Zygmund (1977) for the definition of indefinite 
integral and its properties. 

10. See Wheeden and Zygrnund, (1977) page 101. 

11. To consider a correct example, take all(u) = e-Xr , 421(u) = 
~ { e - ~ '  for all u 2 0, and a12 0. In continuous time, the second 
variable does not Granger cause the first one and, by Proposition 4, 
the same is true in the sampled process. However it can be shown 
that if we unit-average the first variable, the second variable will 
Granger cause the first one. 


